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Cumulative Function of the Bijvoet Ratio*
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Theoretical expressions for the cumulative function of the Bijvoet ratio is worked out for a non-centro-
symmetric crystal containing anomalous scatterers of the same type, as well as a large number of normal
scatterers. Three cases corresponding to the number of anomalous scatterers in the unit cell being 1
and many (MN and MC cases) are considered. The theoretical results are used to obtain the percentage
of reflexions for which the value of the Bijvoet ratio is greater than the specific values 01, 0-2, ..., 0-6
corresponding to various values of the parameters & and o2 characterizing the anomalous scatterers.

1. Introduction

The optimum conditions for observing large Bijvoet
differences in non-centrosymmetric crystals containing
a single species of anomalous scatterer have been dis-
cussed by Parthasarathy (1967) (this paper will be here-
after referred to as P, 1967) from a theoretical study of
the expectation value of the Bijvoet ratio (which is
denoted by the symbol J and defined as the magnitude
of the ratio of the Bijvoet difference to the mean inten-
sity of the Bijvoet pair of reflexions). The results in
that paper (P, 1967) cannot however be used to pre-
dict, in the case of a given non-centrosymmetric crystal
containing a known type of anomalous scatterer, the
percentage of reflexions for which the Bijvoet ratio
would be larger than a specific value. Before starting
data collection with a given crystal, it would be useful
to know a priori the percentage of reflexions for which
the crystal will exhibit a Bijvoet ratio which is larger
than any specific value. Since such a prediction can be
made only from a study of the cumulative function of
the Bijvoet ratio, we shall derive the cumulative func-
tion of 6 for the one-atomand many-atom cases (namely,
P=1, MNt and MC, see P, 1967 for the notation).
The theoretical results are used to obtain a table show-
ing the percentage of reflexions having a Bijvoet ratio
greater than the specific values 0-1,0-2, ... 06 as a
function of £ (which is the ratio of the imaginary part
to the total real part of the atomic scattering factor of
the anomalous scatterer) and o? (which is the fractional
contribution to the local mean intensity from the
anomalous scatterers in the unit cell).

The notation used in this paper is the same as that
in the earlier paper (P, 1967). Here we shall not con-
sider the two-atom case, since the cumulative function
in this case turns out to be a triple integral which is
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1 The many-atom case in which the group of anomalous
scatterers form a non-centrosymmetric group will be denoted
by MN in this paper instead of MA in view of the comments
of Rogers (1965).

somewhat tedious to evaluate for various values of 4,
k and o?. Since the distribution function of the normal-
ized Bijvoet difference (Parthasarathy & Srinivasan,
1964) and the expectation value of the Bijvoet ratio
(P, 1967) for the two-atom case are close to that of the
many-atom (i.e. P=MN) case, we may expect a similar
trend in the cumulative function of the Bijvoet ratio as
well.

2. Derivation of the cumulative function of the
Bijvoet ratio &

Consider a non-centrosymmetric crystal containing P
anomalous scatterers (all of the same type) and Q
normal scatterers in the unit cell. Let N(=P+ Q) be the
total number of atoms in the unit cell. From equation
(14) of Parthasarathy (1967) we obtain the expression
for the Bijvoet ratio as}

6=4k|Fp| sin 6/|Fy| . ¢))

Since ¢ is defined to be a positive quantity, 8 in (1) can
be taken to be confined to the range 0 <8< where we
always have [sin @] =sin 6. Since it is convenient to use
the normalized variables yp(=|Fp|/{|Fp[*)"?) and
ya(=1FRl/KIFx|*Y?), we can rewrite (1) as

d=4ko,yp sin O/yy , 2
=4dkv, say,
where we have defined the variable v to be
O0<f<m. 3)

It is found to be convenient to first work out the cumu-
lative function of v and then deduce that of ¢ from it.

It is clear from (3) that the cumulative function of ¢
can be worked out from a knowledge of the joint

v=0,ypsin 0/yy,

1 In obtaining (1), |F5'|* has been neglected in comparison
with |Fy|?® in the expression for the mean intensity of the
Bijvoet pair of reflexions. This approximation is found to
be necessary in order to reduce the complexity of the theory.
It may also be noted that the range of J as defined in equation
(1) is 0 to oo while actually the maximum possible value of
Bijvoet ratio is 2 (see Zachariasen, 1965). This change in the
range of J also arises because of the above approximation.
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probability density function (abbreviated as pdf) of yy,
yp and 0 by making use of the theory of transformation
of variables. The quantity # in (3) is not a convenient
one for this purpose, since sin @ is a double-valued
function in the range 0 to n. However, since the func-
tion sin @ is symmetrical about #=x/2, J has the same
value for §=0, and §=r—6,, where we define 8, to be
an acute angle. It is therefore obvious that we can
restrict the range of the argument of the sine function
to 0 to 7/2, provided we properly take into account the
actual probabilities of occurrence for the two events,
namely §=6, and §=nr—0, for which the values of &
are the same. In this context it is found to be convenient
to define a new variable §, as

=16 if 0<0<7/2,
n—0 if =m2<0<m. ()

In terms of the variable §,, we can rewrite (3) as

v=0,ypsin Op/yy, 0=6,<7m/2. %)

Derivation of the cumulative function of v
The conditional joint pdf of yy and 8 for a given ys
can be obtained from equation (6) of Parthasarathy
(1967) as
P(yn0;,yp)=
(2yn/nad) exp [— (v +02yh—20,ynye cos 8)/a3] . (6)
The joint pdf of yy, y» and 6 will therefore be given
by
P(yn,0,yp) = (2yn/o3)
x exp [— (V4 +02yh—20,ynyp cos 0)/a3]1P(ye) , (7)
where P(yp) is the pdf of yp. We know that
o(yp—1) for P=1, (8a)
2yp exp (— %) for P=MN, (8b)
V2/m exp (—y3/2) for P=MC. (8¢c)
The joint pdf of yy, yp and 6, can be obtained from (4)
and (7) as
P(¥n>Yp,00)=P(¥n,yp,0=00)+ P(yy,yp, 0=1—0o)
= (4yn/na3) exp [~ (v&+01y})/of]
x cosh (20, yxyp €08 Oo/oDP(yp) . (9)

P(yp)=

From (5) and (9) the joint pdf of v, yy and 6, can be
obtained as

P@,yn, 90)=(4}’12v/750'10'% sin )
x exp [— (v?/sin? 6, + 1)y%/o3]
x cosh (2y%v cot 8y/a3)P (vyn/oy sin O,) .
(10)

The cumulative function of » will therefore be given by

N@)= S Sm ﬂ:o P(0,yx, 00)dyndBodo . an

0 Yo
Since the quantity v occurring in the integrand of (11)
is a dummy variable of integration, it can in fact be
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replaced by any other symbol, say . Since the quantity
v appearing as the upper limit in the integral in (11)
is a fixed quantity as far as the integrations are con-
cerned, the order of integrations in (11) is immaterial.

One-atom case (P=1)

Making use of (8a) in (10) and the property that
d(ax)=d(x)/a we obtain the joint pdf of v, yy and 6, as
4 .

P30 00= (22 )exp [ (1+ osin® O3]
nas

2
xcosh (Moczitﬂo_) é (yN -

2

0y s;n 00)' (12)

Substituting (12) in (11) and carrying out the integra-
tions, we obtain the cumulative function of v as (see
Appendix 4)

No)= 1§ exp (~at sin? Gyjodlexp (~12)

saxp(—f2)+ L2250 et (1) ert (70,
2
13)
where we have used the simplifying notation that
fo= ?(_Lm % 4 cos 90). (14)
2

The integral in (13) is to be evaluated by a numerical
method.

Many-atom case (P=MN)

From (8b) and (10) we obtain the joint pdf of v, yy
and 6, as

8 vy} cosec?
P(0,yy,00)= — N7 0

7 olo?

2
X eXp [— %’;—(1 +

UZ
?%*S—inTe—o*)] cosh (2Uy§, cot 00/0'%) .
1s5)

Making use of (15) in (11) the cumulative function of v
can be shown to be (see Appendix B)

N@)=v/(t? + i3 (16)
Many-atom case (P=MC)

Making use of (8¢) in (10) we obtain the joint pdf of
v, yy and 6, as
_ 42 %
P(v,yn,00)= —713—,201—0% 51—9'0‘

xexp[—ﬁv—(l—l- g02 )]COSh(z 2UCOtg/Uz) (17)
o2 sin? 6, I o

where we have used the simplifying notation that
g=(1+0})/20% . (13)
Substituting (17) in (11) and carrying out the integra-
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tions we can obtain the cumulative function of » as
(see Appendix C).

g, /2
NO= T2, S

where we have used the simplifying notation that
F.(00)=

[F+(60) + F_(60)1db, , (19)

gv +cos G, sin 6,
(g —cos? y)[sin? O, + 2v cosb, sin O, + gv?]'/?
g

The integral in (19) is to be evaluated by a numerical
method.

(20)

3. Discussion of the theoretical results

It is possible to make use of (9) to obtain the pdf of the
normalized Bijvoet difference x (Parthasarathy & Srini-
vasan, 1964) and the expectation value of the Bijvoet
ratio 6 (P, 1967). Since this method is only an alternate
procedure for arriving at the earlier results, the details
are not given here.

From (2) it is clear that (k being a constant for a
given crystal)

P(0<6p)=P(v<dy/dk) . 20
If we denote the cumulative functions of 6 and v by
N4(0) and N,(v) respectively, we can rewrite (21) as

N5(3) = Ny(So/4k) . (22)

Thus, by evaluating the cumulative function of v at
v=0,/4k we can obtain the value of the cumulative
function of ¢ at d=4J,.The function Ng(d,) has been
evaluated in this way for various values of the param-
eters k and o} by making use of the expressions for
N, (vy) as obtained in (13), (16) and (19). From this, the
percentage of reflexions for which the Bijvoet ratio is
larger than any given value, say J, can be obtained as

P(6>80)=1—Nyd,) . (23)

The values of P(6=>4,) for 6,=0-1,0-2, ... 0:6 have
been obtained for various values of the parameters
k(=0-04, 0-06, ...,0-3)and 6}(=0-1,0-2, ..., 0:9) and
the results are given in Table 1. It is seen from (16) that
the function N,(v,) for the many-atom (P=MN) case
is symmetrical about ¢7=0-5 and hence in this partic-
ular case it would be sufficient to tabulate the values of
P(d=d,)intherange 2 <0-5. For example, the function
N,(vy) for the P=MN case has the same value for
02=0-4 and 0-6. It may be noted here that in order to
make use of this Table in the case of an actual crystal,
it is necessary to employ values of & and ¢? which are
averaged over the whole range of sin §/4 (for which
data is being collected), since the quantities & and o2
in general vary with (sin 6/1).

From a study of Table 1 we arrive at the same con-
clusions as in the earlier paper (P, 1967), namely, (i)
that large Bijvoet ratios would be observed when the
value of 62 is close to 0-5, (ii) that the cumulative func-
tion of ¢ is more sensitive to the variation in k than in
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o} and (iii) that the optimum conditions for observing
large Bijvoet differences are ¢2~0-5 and k large.

The theoretical results have been tested by making
use of the calculated Bijvoet ratios for a few crystal
structures and the details of these structures are given
in Table 2. One of these structures (i.e. 4) corresponds
to the two-atom case (i.e. P=2) and the others (i.e. 1,
2 and 3) correspond to the four-atom case (P=4).
Though the exact theoretical expressions for the cumu-
lative function for the two-atom and four-atom cases

Table 1. Cumulative function of the Bijvoet ratio
as a function of k and o?
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have not been obtained yet, it is expected that the cumu-
lative function of J for these cases would follow closely
that of the many-atom (P=MN) case. The theoretical
curves for these structures have therefore been ob-
tained by making use of the results for the P=MN
case and are shown by the solid line in Fig. 1. The ex-
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o . . . .
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Fig. 1. Verification of the theoretical cumulative function of
J in the case of the structures in Table 2. The number near
each curve corresponds to the number in the first column of
Table 2.
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perimental distributions for the various cases are
shown by crosses ( x ). The origins for the curves of the
structures (2), (3) and (4) have been shifted along the
y axis to 0-3, 0-6 and 0-9 respectively in order to show
all four distribution curves in the same figure. It is seen
from Fig. 1 that the agreement between theory and
experiment is fairly good showing that even when the
number of anomalous scatterers in the unit cell is not
large in the strict sense, we can make use of the results
of the many atom (P=MN) case for the cases P=2
and 4 to obtain useful results.

One of the authors (VP) is thankful to the University
Grants Commission, India, for financial assistance.

APPENDIX 4
Integrating (12) with respect to yy we obtain the joint

pdf of v and 6, as
40% sin? 6, [ of(l . sir:ZB_o)]

P(U, 00) =

e o2
5 .
x cosh (—201 Sn gp_cps % ) (A1)
o

The probability that v<wv, will therefore be given by

vo pR/2
N(u(,)=S0 So P(v,6,)dvd8, . (42)

Making use of (41) in (42) and then substituting u=1/v
we obtain
401 (™2 | e
N(vg)= —S sin? 6 S
( 0) 7[0_% o 0 Vv
) .
203u cos 290 sin eo)udu
g3

a? .
exp[~ 7% (1 +u?sin? 00)]

X cosh( (43)

It is easy to show that

‘m exp (—ax?) cosh (bx)xdx

ec

/= b exp (b*/4a)

2 Ve
x {erf(Vac+b/2Va)—erf(V&c—b/zya)}]. (44)

4_1a [2 exp (—ac?) cosh(bc) +

Table 2. Details of the crystal structures used for verifying the theoretical results

Number of
P atoms in
Space the unit
Number Crystal Reference group cell {a}) 3
1. Methyl melaleucate Hall & Maslen (1965) P2,2,2, 4 0-79 0-18
iodoacetate
2. Davallol iodoacetate Yow-Lam Oh & P2,2,2, 4 0-84 0-18
Maslen (1966)
3. Beyerol monoethylidene O’Connell & Maslen P2,2,2, 4 0-85 0-18
iodoacetate (1966)
4, L-a-y-Diaminobutyric Naganathan & P2, 2 0-55 0-08

acid hydrochloride

Venkatesan (1971)
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Making use of (44) we can simplify (43) to obtain

/2
N(g) = %SO exp (— o2 sin? 6y/c?)

x [exp (—f2)+exp (—f2)

7o, cos 6,
. Vo, cos 6,
g,

{erf (£2)—erf (£)}] 0y, (45)

where we have used the simplifying notation of (14)
and the result that

cosh (x)=[exp (x)+exp (—x)]/2 .

APPENDIX B
Integrating (15) with respect to 6,, we obtain the joint
pdf of v and yy as

2
AN p =30+ diodotol], (BI)

Vr 010;

where we have made use of the substitution cot G,=/t
and then the equation (39) on p. 166 of Erdelyi (1954).
Carrying out the integration over yy by making use of
equation (15) on p. 313 of Erdelyi (1954) we obtain the
pdf of v to be

P(v)=0%63/(v* + a202)*>. (B2)
The probability that v<uv, will therefore be given by

i 2
N(vo)= S " gloidy

P(v’yN) =

o @ oiod”

oz =vol(W§+alod)% (B3)

APPENDIX C

Integrating (17) with respect to yy by making use of
the substitution ¢=y% and the equation (19) on p. 164
of Erdelyi (1954) we obtain the joint pdf of » and 6, as

OF THE BIJVOET RATIO

Paay= %50

7)/20, L(sin? 65+ 2v sin 6, cos Oy +gv?)*2
N 1
(sin? f,— 2v sin 6, cos 8, + gv?)*’?

]. (1

The probability that v<wv, will therefore be given by

Yo

/2
S P(v,0,)dvd, .
0

N(vo)=S (€2)

0

Carrying out the integration over v first by making use
of equation (167) on p. 26 of Peirce & Foster (1966) we
obtain

N(vg)=

/2
e W LR CATS ) (e
7/ 20, %0

where we have used the simplifying notation of (20).
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